17 research outputs found

    Genome engineering of isogenic human ES cells to model autism disorders.

    Get PDF
    Isogenic pluripotent stem cells are critical tools for studying human neurological diseases by allowing one to study the effects of a mutation in a fixed genetic background. Of particular interest are the spectrum of autism disorders, some of which are monogenic such as Timothy syndrome (TS); others are multigenic such as the microdeletion and microduplication syndromes of the 16p11.2 chromosomal locus. Here, we report engineered human embryonic stem cell (hESC) lines for modeling these two disorders using locus-specific endonucleases to increase the efficiency of homology-directed repair (HDR). We developed a system to: (1) computationally identify unique transcription activator-like effector nuclease (TALEN) binding sites in the genome using a new software program, TALENSeek, (2) assemble the TALEN genes by combining golden gate cloning with modified constructs from the FLASH protocol, and (3) test the TALEN pairs in an amplification-based HDR assay that is more sensitive than the typical non-homologous end joining assay. We applied these methods to identify, construct, and test TALENs that were used with HDR donors in hESCs to generate an isogenic TS cell line in a scarless manner and to model the 16p11.2 copy number disorder without modifying genomic loci with high sequence similarity

    Activity of bisphosphonates against Trypanosoma brucei rhodesiense.

    No full text
    We report the results of a comparative molecular field analysis (CoMFA) investigation of the growth inhibition of the bloodstream form of Trypanosoma brucei rhodesiense trypomastigotes by bisphosphonates. A quantitative three-dimensional structure-activity relationship CoMFA model for a set of 26 bisphosphonates having a range of activity spanning approximately 3 orders of magnitude (minimum IC(50) = 220 nM; maximum IC(50) = 102 microM) yielded an R(2) value of 0.87 with a cross-validated R(2) value of 0.79. The predictive utility of this approach was tested for three sets of three compounds: the average pIC(50) error was 0.23. For the nitrogen-containing bisphosphonates, in general, the activity was aromatic- >> aliphatic-containing side chains. The activity of aromatic species lacking an alkyl ring substitution decreased from ortho to meta to para substitution; halogen substitutions also reduced activity. For the aliphatic bisphosphonates, the IC(50) values decreased nearly monotonically with increasing chain length (down to IC(50) = 2.0 microM for the n-C(11) alkyl side chain species). We also show, using a "rescue" experiment, that the molecular target of the nitrogen-containing bisphosphonate, risedronate, in T. b. rhodesiense is the enzyme farnesyl pyrophosphate synthase. In addition, we report the LD(50) values of bisphosphonates in a mammalian cell general toxicity screen and present a comparison between the therapeutic indices and the IC(50) values in the T. b. rhodesiense growth inhibition assay. Several bisphosphonates were found to have large therapeutic indices (> or =200:1) as well as low IC(50) values, suggesting their further investigation as antiparasitic agents against T. b. rhodesiense
    corecore